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Startup Esperanto Technologies has designed a chip 
with a thousand tiny RISC-V cores based on its ET-Minion 
design. Each core has a custom tensor unit that offloads the 
matrix multiplication common in neural-network inferenc-
ing; working together, the Minions can perform 139 trillion 
INT8 operations per second (TOPS) when operating at 
1.0GHz. Yet the ET-SoC-1 design is estimated to consume 
only 20W in typical operation. This power efficiency is suit-
ed to both data-center accelerators and network-edge appli-
cations. 

The chip has taken a long road to market. Esperanto 
completed its RTL design in September 2018 in prepara-
tion for a mid-2019 tapeout, but completing the design took 
far longer than expected. In late 2019, the board replaced 
founding CEO Dave Ditzel with Art Swift, former CEO of 
MIPS and Wave Computing. Swift brought in Darren Jones, 
also from MIPS and Wave, to run the engineering team, 
although Ditzel remains involved in technology develop-
ment. 

Esperanto went silent for a year, declining to announce 
even the CEO change, as it worked to complete and verify 
the complex 7nm design. Having reached this milestone, it 
expects to tape out to TSMC soon; if so, we expect samples 
in 2Q21 and full production in 1H22. To support this effort, 
the company has a total of $82 million in funding and a staff 
of more than 100 employees and full-time contractors. 

The chip contains 34 tiles that each comprise 32 ET-
Minion cores, for a total of 1,088 cores and 136MB of 
SRAM. As Figure 1 shows, the chip also features four super-
visory ET-Maxion CPUs, an eight-lane PCI Gen4 interface, 
and four 64-bit DRAM interfaces. The company withheld 
the die size for the 24-billion-transistor chip, which we ex-
pect measures about 300mm2. It plans to offer the chip 
standalone, on a PCIe card, and in the Dual M.2 form factor 

that Facebook favors. A Glacier Point card can hold six of 
these M.2 modules in a dense power-efficient design. Using 
this card, the Esperanto modules can achieve more than 800 
TOPS with a typical power of 120W. The company plans to 
disclose neural-network benchmark results once it com-
pletes silicon characterization. 

Minions Reduce RISC-V Power 
Because the ET-Minion cores comprise most of the die area, 
Esperanto focused on maximizing their power efficiency. 

Figure 1. Esperanto ET-SoC-1 die plot. The 34 blue boxes 
indicate the ET-Minion tiles, each comprising 32 cores. The 
purple box contains four more-powerful ET-Maxion CPUs, and 
the orange box surrounds the PCIe controller. The left and 
right edges show the sixteen 16-bit DDR DRAM interfaces. 
(Image source: Esperanto) 
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They operate from a separate voltage plane that typically 
supplies about 0.4V, which is well below the standard 7nm 
voltage but above the threshold voltage. Although it’s a 
simple in-order scalar design, the CPU employs a longer 
pipeline than typical five-stage RISC-V cores, not to enable 
high-speed operation but to allow moderate speeds at low 
voltage. As a result, the core can reach 1.5GHz or higher in 
7nm but normally operates at 1.0GHz or less to save power. 

To enable the entire core to operate at such low volt-
age, the company designed a custom SRAM cell. This cell is 
larger than standard TSMC SRAM but can achieve the tar-
get clock speeds at low voltage. Each CPU has 4KB of SRAM 
that’s configurable as data cache, scratchpad memory, or a 
combination of both (with 512-byte granularity) depending 
on the application. The remainder of the core employs other 
circuit-design techniques to reduce power, along with exten-
sive clock gating. 

The Minion core implements the 64-bit RISC-V base 
integer instruction set plus the M (multiply), F (FP), and C 
(compressed) extensions. But it adds custom instructions to 
optimize performance on neural networks, including tensor 
multiplication and transcendentals; the latter accelerate cer-
tain activation functions. 

To increase utilization, Minion is dual threaded. Al-
though this technique doubles the size of the register files, it 
enables the core to continue processing after a cache miss or 
other multicycle data fetch by simply switching to the other 
thread. The second thread can also be used for software-
controlled prefetches. The scalar portion of the CPU fetches, 
decodes, and executes standard RISC-V instructions using 
an integer ALU and a load/store unit. 

Autonomous Tensor Operations 
The ET-Minion CPU includes two vector units: one for in-
teger data and one for floating-point data. Although the chip 
targets AI inference, Esperanto and Facebook believe float-
ing point remains an important data type. The 256-bit-wide 
FP vector unit can perform 8 multiply-accumulate (MAC) 
operations per cycle for 32-bit floating-point (FP32) data or 
16 MAC operations for FP16 data. It draws data from a vec-
tor register file that has 32 entries per thread (64 total), as 
Figure 2 shows. The 512-bit-wide integer vector unit can 
perform 64 MAC operations per cycle for 8-bit (INT8) 
data, achieving the chip’s peak performance. To satisfy its 
full width, it simultaneously draws data from its private 
256-bit-wide vector register file and the FP vector registers. 

Many processors, including some RISC-V designs, 
provide vector units and vector registers. What’s unique 
about Minion is its custom multicycle tensor instructions 
that can process arbitrarily large matrices. To execute tensor 
instructions, the core contain a small state machine that 
cycles through the data. A single instruction can thus oper-
ate for dozens or hundreds of cycles; during this time, the 
entire scalar portion of the core, including the front end and 
the scalar units, is clock gated. This approach uses far less 
power than a standard vector processor that must fetch and 
execute one instruction per cycle for maximum throughput. 

One problem is that the vector registers hold only 32 
operands, which must be allocated among two multiplicands 
and the accumulator on each cycle. The tensor instructions 
are optimized for common convolution operations in neural 
networks. When operating on INT8 values, both multipli-
cands stream from memory while the vector registers hold 
the accumulators, which are always 32 bits wide to avoid 
overflow. Because the data cache is so small, the tensor state 
machine loads these values directly from the level-two (L2) 
cache in parallel with the computations. The L2 cache can 
provide 512 bits per cycle, enough to maintain peak com-
pute performance. 

The CPU also includes a vector transcendental unit 
that computes sine and exponential functions. Combining 
these functions allows quick calculation of sigmoid, hyper-
bolic tangent (tanh), and other functions that are frequently 
used to postprocess convolution results. The unit works on 
the vector registers and can compute four FP32 values per 
cycle. It employs ROM-based lookup tables, which consume 
considerable die area but very little power. 

A Short Visit to the Shire 
The ET-Minion cores are in groups of eight called neigh-
borhoods. Each neighborhood shares a 32KB instruction 
cache that provides one cache line (16 instructions) per cycle 
to each of two cores; the cores buffer these instructions so 
they can continue to operate while they take turns accessing 
the cache. When executing neural-network code, a core can 
take dozens of cycles to perform a single matrix instruction, 
reducing pressure on the instruction cache. 

Figure 2. Minion CPU block diagram. Along with a small 
scalar (64-bit) unit, the core contains two wide vector units 
that accelerate matrix multiplication, plus a vector unit for 
transcendental functions (trans). 
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Each tile, which Esperanto calls a shire, contains four 
neighborhoods for a total of 32 cores. Each neighborhood 
has a single connection to a four-port crossbar that pro-
vides access to four 1MB SRAM banks, as Figure 3 shows. 
Software can independently configure subbanks as scratch-
pad memory, L2 cache, or L3 cache as appropriate for the 
application. Scratchpad memory fits into a unified global 
address space that all cores can access, allowing software to 
directly manage the location of all data on the chip. L2 
cache is shared among all the Minions in a shire, whereas 
L3 cache is shared across the entire chip. For example, 
software could configure three L2 banks and one L3 bank 
per tile on 32 tiles, providing a 3MB L2 cache for each tile 
plus a distributed 32MB L3 cache. 

As noted, the cores are designed for low-voltage op-
eration to increase power efficiency, but the custom low-
voltage SRAM is less dense than standard SRAM. For the 
shire memory, Esperanto employs high-density SRAM to 
maximize the chip’s storage capacity, but this memory is 
designed for nominal voltage. Thus, the tile features multi-
ple voltage planes, separating the cores from the shire’s 
SRAM. In fact, the chip contains dozens of power do-
mains, enabling fine-grained power management to opti-
mize efficiency. 

Assembling the Tiles 
The tiles communicate using a standard mesh architecture. 
Each has a mesh controller that connects to the north, 
south, east, and west tiles. In Esperanto’s design, the mesh 
includes one link in each direction, each delivering 128GB/s 
at 1.0GHz. In addition to the 34 ET-Minion tiles, the mesh 
connects one ET-Maxion tile and one PCIe tile. The latter 
controls an eight-lane PCIe interface that operates at up to 
Gen4 speed for a maximum data rate of 16GB/s. The Dual 
M.2 module splits this interface across the two connectors. 
This interface typically links the accelerator to a host pro-
cessor. 

The chip can also operate in standalone mode using 
its integrated host processor. The Maxion tile contains 
four Maxion CPUs, which Esperanto designed as general-
purpose application cores that can run an RTOS or even 
Linux (see MPR 12/10/18, “Esperanto Maxes Out RISC-
V”). Operating at up to 1.5GHz, the Maxion cores perform 
about 60% better than a Cortex-A55 at the same clock speed. 
The Maxion tile also contains 4MB of L2 cache and an extra 
Minion core that acts as a low-power service processor. 

Although the Minion tiles provide a total of 136MB of 
on-chip SRAM, large neural networks need more capacity. 
The chip supports up to 32GB of external DRAM using 
sixteen 16-bit channels of LPDDR4X-4266 memory, typi-
cally implemented with four 64-bit-wide DRAM chips. The 
complete memory system delivers up to 132GB/s. Each 
channel has two mesh stops to support the peak data rate. 
LPDDR4X, which appears in most smartphones, employs 
0.6V I/O to minimize power. 

Like an Nvidia GPU, Esperanto’s chip will modulate 
its clock speed to remain within a specified power limit. 
Thus, the same chip can hit a variety of performance and 
power points. The company will announce product con-
figurations after it has characterized the initial silicon. Even 
within a specific power envelope, the chip can operate at a 
higher speed on lighter workloads. Esperanto’s typical 
power estimate of 20W is based on running a typical deep-
learning model at 1.0GHz; a model with high utilization 
would use more power at that clock speed, or it would have 
to throttle down to stay at the same power. We expect the 
chip will reach 30W TDP when running at peak TOPS for 
1.0GHz; although this power would exceed the limits of the 
Dual M.2 form factor, the PCIe card could easily handle 
multiple chips. 

Esperanto is developing a software stack that builds 
on Facebook’s open-source Glow compiler, which converts 
models from Pytorch or the ONNX exchange format to an 
intermediate representation. Esperanto’s compiler back 
end converts this representation to RISC-V code, including 
the company’s custom matrix instructions. It also maps the 
model onto the chip’s numerous cores and handles the 
memory configuration and allocation.  

Aiming for Cloud TOPS 
Few AI-accelerator vendors target low-power M.2 modules. 
Qualcomm recently announced its Cloud AI 100 in that 

Figure 3. Minion tile block diagram. Each tile, or “shire,” in-
cludes 32 Minion CPUs grouped into four “neighborhoods.” 
The tile offers 4MB of SRAM divided into four banks to in-
crease bandwidth through the crossbar. 

Price and Availability 

We estimate Esperanto will sample the ET-SoC-1 in 
mid-2021. The company has yet to announce product 
details or pricing. For more online information, access 
www.esperanto.ai. 

https://www.linleygroup.com/mpr/article.php?id=12069
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form factor (see MPR 10/12/20, “Qualcomm Samples First 
AI Chip”). Its Dual M.2 module carries a 25W TDP rating; 
we estimate a 30W TDP for the Esperanto module. At sim-
ilar power, the Qualcomm chip delivers considerably more 
INT8 TOPS, although it appears to lack floating-point ca-
pability. Thus, Esperanto provides a superior product for 
FP16 inference. 

Both chips have capacious on-chip memory and low-
power DRAM subsystems with identical configurations, as 
Table 1 shows. Both have the same PCIe configuration as 
well. The chip architectures are different, however, as 
Qualcomm relies on relatively few cores that each employ 
large matrix units; Esperanto instead employs more than a 
thousand cores with smaller matrix units. Both approaches 
should work well for traditional CNNs such as ResNet, 
which spend most of their cycles on matrix multiplication. 
Qualcomm hasn’t released benchmarks for other models. 

A data-center operator can combine the M.2 modules 
in carrier cards such as Glacier Point to compete against 
higher-power designs. Among 75W accelerators, one of the 
most power efficient is Tenstorrent’s Grayskull (see MPR 
4/13/20, “Tenstorrent Scales AI Performance”). This chip 
fits onto a bus-powered PCIe card and packs 120 cores, 
choosing an intermediate point between Qualcomm’s big 
cores and Esperanto’s Minions. As Table 1 shows, Grayskull 
and the Esperanto SoC provide similar performance per 
watt for both floating-point and integer data. Although 
both chips are also similar in on-chip and external mem-
ory, a Glacier Point card with six modules would far 
outclass Grayskull in memory capacity. 

One drawback for Esperanto is that its chip has yet to 
reach silicon and won’t begin production for at least a year. 
Both Qualcomm and Tenstorrent have been sampling for 
months and expect production in the months ahead; these 

companies may produce second-generation products by 
the time Esperanto ships its first one. Tenstorrent is al-
ready working on a 7nm design that will improve in power 
efficiency. 

Lowering the Boom on Power 
Esperanto brings to the AI market a sharp focus on power 
efficiency; Ditzel has worked on low-power designs for 
more than two decades (see MPR 2/14/00, “Transmeta 
Breaks x86 Low-Power Barrier”). The generically named 
ET-SoC-1 employs a broad range of techniques to boost 
performance per watt, including low-voltage operation, 
custom circuit design, and clever microarchitecture. To 
optimize the critical matrix-multiplication function, the 
chip uses a simple state machine that minimizes instruc-
tion overhead. This approach enables it to pack 128 TOPS 
into a typical operating power of 20W. By contrast, Nvidia’s 
T4 card requires 70W to provide similar performance. De-
spite its tensor cores, the GPU is notoriously inefficient in 
performance per watt. 

Other vendors, however, also aim to exploit Nvidia’s 
inefficiency. Qualcomm, in particular, used its power-
efficient-smartphone experience to develop the new Cloud 
AI 100 chip, which offers impressive performance in a 
power budget and form factor similar to Esperanto’s. Nei-
ther vendor has disclosed full product details or standard 
benchmark results, however, so a precise comparison is 
difficult. Whereas most AI-chip vendors focus mainly on 
matrix multiplication, we expect Esperanto’s many-core 
design to fare better on RNNs and recommender models 
that require more general-purpose computation. Having a 
thousand cores available, even small scalar ones, provides 
an advantage in this regard. We await benchmark results to 
confirm this thesis. 

Like most AI startups, Esperanto faces the 
difficult task of building a software stack and op-
timizing it to efficiently process customer models. 
Facebook’s Glow offers a piece of this puzzle, but it 
still leaves considerable work for Esperanto. Even if 
it can demonstrate performance and efficiency ad-
vantages, the company must deliver a solid software 
solution before achieving customer adoption. 

Esperanto’s chip would’ve been more com-
petitive had the company stayed on its original 
schedule. The competition for AI inference is fierce 
today and will be yet more so in another year. The 
company’s design appears to be highly power effi-
cient yet flexible enough to handle a broad range 
of models. Once it has achieved silicon, Esperanto 
must validate the chip’s frequency, power, and 
performance and demonstrate its software stack on 
real neural networks. Thanks to its hard-working 
Minions, the company is now ready for tapeout. ♦ 

 
Esperanto 
ET-SoC-1 

Qualcomm 
Cloud AI 100  

Tenstorrent 
Grayskull  

Form Factor Dual M.2 Dual M.2 PCIe card 
AI-Core Count 1,088 cores 16 cores 120 cores 
Clock Speed 1.0GHz* 0.8GHz*‡ 1.3GHz 
Peak FP16 Perf 32Tflop/s Undisclosed 92Tflop/s 
Peak INT8 Perf 128 TOPS 200 TOPS 368 TOPS 
Chip Memory 136MB 144MB 120MB 
DRAM Channels 4x LPDDR4X 4x LPDDR4X 8x LPDDR4 
DRAM Bandwidth 132GB/s 132GB/s 132GB/s 
Host Interface PCIe Gen4 x8 PCIe Gen4 x8 PCIe Gen4 x16 
ResNet-50 Inference† Undisclosed 11,200 IPS 22,431 IPS 
Board Power (TDP) 30W‡ 25W 75W 
TOPS per Watt 4.3 TOPS/W 8.0 TOPS/W 4.9 TOPS/W 
IC Process TSMC 7nm TSMC 7nm GF 12nm 
Production 1H22‡ 1H21 (est) 4Q20 (est) 

Table 1. Premium 5nm smartphone processors. ST=single-thread; 
MT=multithread. The Snapdragon leads the A14 by 2.4x in AI perfor-
mance but lags in CPU performance. (Source: vendors, except *The Linley 
Group estimate, †AIMark, and ‡GfxBench.com) 

https://www.linleygroup.com/mpr/article.php?id=12377
https://www.linleygroup.com/mpr/article.php?id=12287
https://www.linleygroup.com/mpr/article.php?id=12287
https://www.linleygroup.com/mpr/article.php?url=mpr/h/2000/0214/140701.html



