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Esperanto ne est-as nur-a lingvo jam ne. Esperanto is 
also a startup combining the two hottest processor tech-
nologies: AI acceleration and RISC-V. This business plan, 
along with an all-star engineering team led by CEO and 
RISC pioneer Dave Ditzel, helped the company close a re-
cent Series B round of $58 million—enough to bring its first 
processor to market. Esperanto completed the RTL for this 
product in September, so we expect samples to arrive in 
2H19 followed by production around mid-2020. Given the 
long lead time, the company is withholding details, but it 
began the unwrapping process by disclosing the 
microarchitecture of its ET-Maxion CPU. 

The new processor chip actually includes two 
different RISC-V CPU designs. ET-Maxion is a 
high-performance out-of-order (OOO) microar-
chitecture for general-purpose code. ET-Minion is 
a smaller AI-focused core that includes a set of 
proprietary vector extensions. (The RISC-V vector 
committee has yet to approve an official version.) 
Esperanto has publicly described a design with 16 
Maxion cores and 4,096 Minion cores, but we ex-
pect the initial product will be smaller, with no 
more than half as many cores. The processor will 
run Linux and other high-level software on the 
Maxion cores while delegating AI-intensive work-
loads to the Minions. 

The company expects Maxion to deliver 
strong performance while maintaining excellent 
power efficiency. To achieve this performance, the 
CPU can decode four instructions per cycle and 
issue them to five execution units in the OOO 
core. It implements the base RV64GC instruc-
tion set, a common denominator among current 
64-bit RISC-V designs. Using a 10-stage pipeline, 

Maxion targets a relatively modest 2.0GHz clock speed in 
7nm technology, boosting power efficiency. It should con-
siderably outperform any other announced RISC-V CPU. 

Initially, Esperanto plans to sell its processor on ac-
celerator cards for data centers and other customers with 
large AI workloads. This business model follows the lead 
of other AI-chip startups such as Graphcore and Habana 
as well as established vendors such as Nvidia and Xilinx 
(see MPR 11/12/18, “AI Competition Begins to Bloom”). 
But given that Maxion is the most powerful RISC-V CPU 

Figure 1. Maxion microarchitecture. The CPU can fetch, decode, dispatch, 
and retire four RISC-V instructions per cycle. The out-of-order (OOO) core 
has four independent schedulers for the five function units. 
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design yet revealed, several companies—including Western 
Digital, an Esperanto investor—have inquired about licens-
ing it for other applications. 

Starting With a Boom 
With his professor David Patterson, Ditzel cowrote the sem-
inal 1980 paper “The Case for RISC”; he went on to drive 
SPARC CPU development at Sun and later found x86 
startup Transmeta. In 2014, he helped found Esperanto 
Technologies to design a new high-performance CPU. 
Since then, the team has grown to more than 100 engineers, 
including former AMD senior fellow Dan Bailey; Roger 
Espasa, who helped drive vector extensions for both Alpha 
and x86; Dave Glasco, who led SoC design teams at AMD 
and Nvidia; Duane Northcutt, who cofounded DriveScale, 
a cloud-infrastructure vendor; and former Microprocessor 
Report contributors Brian Case and Peter Glaskowsky.  

The Silicon Valley startup initially planned to create its 
own instruction set, but it eventually determined the emerg-
ing RISC-V ISA could provide most of what it needed while 
simplifying the software development. RISC-V also provid-
ed a starting point for the Maxion microarchitecture: the 
Berkeley Out-of-Order Machine (Boom). (Chris Celio, who 
developed Boom at UC Berkeley, now works on Maxion.) 
The Boom tool can generate RISC-V CPUs with variable 
numbers of decoders and function units; Esperanto chose a 
design that supports four instructions per cycle, as Figure 1 
shows.  

Boom designs have several limitations, however. The 
simple six-stage pipeline limits clock speed to 1.0GHz even 
in 7nm. Branch prediction relies on the 20-year-old Gshare 
algorithm, and memory prefetching is nonexistent. Natural-
ly, the university tool lacks provisions for debugging, per-
formance monitoring, and reliability (such as ECC). Thus, 
Esperanto invested considerable effort to improve and up-
grade the initial design. 

Maxion uses a two-level branch predictor combining a 
smaller single-cycle branch target buffer (BTB) and a larger 
backing predictor (BPD). Esperanto designed a 2K-entry 
BTB with a state-of-the-art prediction algorithm to increase 
accuracy. It also added a path-based predictor for indirect 

branches. If the BTB indicates a taken branch, it creates a 
one-cycle bubble in the fetch sequence to fetch from the new 
target. If the slower BPD predicts a taken branch, the bubble 
is two cycles. 

The predicted fetch address feeds into the 48-entry in-
struction TLB, which translates it to a physical address. The 
32KB instruction cache then provides 16 instruction bytes. 
Although most designers employ parity protection for the I-
cache (since the instructions are never modified), Maxion’s 
I-cache includes options for ECC, parity, or no protection. A 
fetch buffer decouples the fetch process from the decoders. 
It has eight entries (32 instructions), enough to cover most 
branch-prediction bubbles. If the buffer is empty, instruc-
tions flow directly to the decoders. Not counting the buffer, 
the front end requires four pipeline stages. 

Show a Little Compression 
The four decoders can handle all basic RISC-V instructions 
including the M (integer multiply/divide), A (atomic), F (32-
bit floating point), and D (64-bit floating point) extensions. 
Esperanto added a set of special registers for debugging, 
performance monitoring, and other low-level functions. 
Although Boom doesn’t implement the C (compressed) ex-
tension, the company added this capability to Maxion for 
broader compatibility with other RISC-V CPUs. Com-
pressed instructions also increase code density and therefore 
the cache-hit rate, boosting performance. 

The C extension defines a set of 16-bit instructions that 
cover the most common functions and can access only a 
quarter of the register file (see MPR 3/28/16, “RISC-V 
Offers Simple, Modular ISA”). These instructions can mix 
freely with standard 32-bit instructions, which are necessary 
to perform the full set of functions. Mixing instruction sizes, 
however, creates challenges for a high-performance CPU. 
For example, the C extension allows 32-bit instructions to 
be unaligned, meaning a single instruction can span a cache-
line boundary or even a page boundary. The branch predic-
tor must comprehend half-word addresses, and the CPU 
may issue redirections for partially decoded instructions. 
Furthermore, Esperanto had to extend the standard RISC-V 
verification tests to cover all these corner cases. 

Maxion detects 16-bit instructions as they come 
from the I-cache. Because every 16-bit RISC-V in-
struction maps to a single 32-bit RISC-V instruction, 
the hardware simply expands compressed instructions 
before loading them into the fetch buffer. Although 
this approach adds some complexity to the front end, 
it greatly simplifies the decoders, which handle only 
32-bit encodings. Once the instructions are decoded, 
the CPU renames the 32 architected integer registers 
to 128 physical registers; floating-point registers map 
to a separate 64-entry physical register file (PRF). The 
instructions then dispatch to the out-of-order core. 
Decoding, renaming, and dispatching squeeze into 
two pipeline stages, as Figure 2 shows. 

Figure 2. Maxion pipeline. The CPU requires 10 stages for basic integer 
instructions and 12 stages for a load instruction that hits the data cache. 
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Maxion offers five function units: two simple integer 
units; one complex integer unit that includes multiply, di-
vide, and branch capability; one load/store unit; and one 
floating-point unit (FPU). Each has a 16-entry scheduler, 
except the two simple integer units share a single scheduler, 
resulting in a total of 64 entries. Each scheduler can issue 
one instruction per cycle (two for the shared scheduler) to 
its function unit(s); instructions issue when their operands 
are available and thus can proceed out of program order. 
After being issued, instructions read their operands from the 
PRF, execute for one or more cycles, then write their results 
back to the PRF. The reorder buffer (ROB) retires up to four 
instructions per cycle in program order; it can track 128 in-
structions in the reorder window. 

Shouldering the Load 
The complex integer unit resolves all branches, updating 
the branch predictors. If the branch result differs from the 
original prediction, the pipeline must be flushed and re-
started from the new target address, causing a 10-cycle delay, 
as Figure 2 shows. The 64-bit-wide FPU is fully pipelined 
for multiply-accumulate (MAC) instructions, which have a 
four-cycle latency for both single- and double-precision 
operands. 

The load/store unit calculates the effective address and 
places it in the 32-entry load queue or 32-entry store queue 
as appropriate. Entries that clear the queue proceed to the 
32-entry data TLB. A 1,024-entry L2 TLB services both 
DTLB and ITLB misses, albeit with a one-cycle bubble; a 
hardware page-table walker (PTW) resolves L2 TLB misses. 
The CPU then accesses the data cache and (for a load) re-
turns the result to the register file. The loaded value is avail-
able for subsequent instructions on the next cycle, yielding a 
load-use delay of at least four cycles, as Figure 2 shows. Ac-
cesses that miss the data cache move to the unified L2 cache. 
In the meantime, subsequent accesses in the load/store 
queues can access the data cache (hit under miss). 

At 64KB, Maxion’s data cache is larger than its instruc-
tion cache and implements ECC protection to avoid data 
loss. A 4MB L2 cache services both I- and D-cache misses 
and is also ECC protected; presumably, multiple Maxion 
cores share this cache. The CPU contains stride prefetchers 
for the L1 and L2 to reduce cache misses. 

As Figure 3 shows, the layout allocates the most area 
to branch prediction (including various memories), the 
floating-point unit, and the prefetcher. Accurate branch 
prediction minimizes the number of 10-cycle misprediction 
penalties. Similarly, the prefetcher avoids long accesses to 
the L2 cache and DRAM, so spending die area on these units 
provides a strong performance boost. 

Reaching Arm’s Middle 
On the basis of its testing and simulations, Esperanto ex-
pects Maxion’s performance per clock (IPC) to fall between 
that of Arm’s Cortex-A57 and Cortex-A72 CPUs on the 

SPECint_2006 benchmark, as Figure 4 shows. But the A72 
will be four years old by the time Maxion reaches produc-
tion. A more appropriate comparison is with Cortex-A76, 
Arm’s most recent high-end mobile CPU (see MPR 6/4/18, 
“Cortex-A76 Revamps Core Design”). By our estimates, 
based on published benchmark results, the A76 has delivers 
about 50% better IPC than the A72 and thus leads the pro-
jected Maxion score by a similar amount. 

To achieve this IPC advantage, the A76 implements a 
considerably more powerful microarchitecture. Although 
like Maxion it’s a four-issue machine, the A76 provides a 
second floating-point unit and, critically, a second load/store 
unit. Memory operations are often a performance limiter, 

Figure 3. Preliminary Maxion layout. The CPU includes a 
32KB instruction cache (IC), branch prediction (BPU and 
BPD), decode and rename logic (RNM), out-of-order logic 
(OOO), integer units (IRF), a floating-point unit (FPU), a load-
store unit (LSU), a page-table walker (PTW), a prefetcher 
(HPF), and a 64KB data cache. 

Figure 4. Per-clock performance. Esperanto projects its 
Maxion CPU will deliver per-clock performance similar to 
that of Cortex-A72, but it will still lag current high-end Arm 
CPU designs. *SPECint_2006, GCC. (Source: Esperanto, ex-
cept †The Linley Group estimate) 
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and handling two loads per cycle is a hallmark of modern 
high-performance CPUs. The A76 also has nearly twice as 
many scheduler entries as Maxion, creating a much larger 
reorder window. It features a private L2 cache with six-cycle 
latency, markedly faster than Maxion’s large shared L2. 

The other half of the performance equation is clock 
speed. Given that Cortex-A75 achieves 2.85GHz in 10nm, 
Arm expects Cortex-A76 (which uses the same pipeline) to 
reach 3.0GHz in 7nm—much faster than Maxion’s projected 
2.0GHz. To enable greater clock speeds, these Arm cores 
employ a 14-stage integer pipeline that’s considerably longer 
than Maxion’s 10-stage design. In particular, the Arm pipe-
line allows an extra cycle for both instruction- and data-
cache access, relieving that bottleneck. Esperanto expects 
that Maxion’s clock could exceed 2.0GHz in some configu-
rations, but its shorter pipeline is unlikely to approach the 
speed of the A76. Combining its greater IPC and faster 
clock, the A76 will likely double Maxion’s performance. 

On the plus side, we expect Maxion to consume less 
than 0.5mm2 in 7nm, making it about half the size of 
Cortex-A76, as Table 1 shows. (For comparison, we re-
moved the A76’s private L2 cache from its area.) Although 
some of this savings may come from the simpler RISC-V 
ISA, we believe most comes from the smaller scheduler and 
single load/store unit. Another big savings lies in Maxion’s 

lone 64-bit FPU versus the A76’s dual 128-bit FPUs. Those 
wider units implement Arm’s Neon SIMD instruction set, 
whereas Maxion omits any vector instructions. To imple-
ment similar features, the bulky FPU in Figure 3 would need 
to be at least four times larger. The smaller area and lower 
clock speed should reduce Maxion’s power, possibly enough 
to match the mobile-optimized A76 in efficiency.  

Table 1 also compares Maxion with Cortex-A55, a 
CPU that targets power efficiency rather than maximum 
performance. The A55 is a simple in-order design that’s 
limited to two instructions per cycle, although it’s flexible in 
its ability to pair instructions (see MPR 6/5/17, “Cortex-
A55 Improves Memory”). Despite the A55’s relatively short 
seven-stage pipeline, it exceeds 2.0GHz in some 10nm prod-
ucts, possibly because Arm tuned this pipeline through sev-
eral generations. Esperanto is withholding Maxion’s die area 
and power until it completes the physical design, but the 
RISC-V core will be hard pressed to match the A55’s power 
efficiency and small size. 

Maximizing Performance per Watt 
Using Arm as a well-known point of comparison, Maxion’s 
performance should fall about halfway between that of the 
“big” Cortex-A76 and the “little” Cortex-A55. This ratio is 
consistent with the designs’ relative microarchitecture com-
plexity. Since Arm positions the A76 for best performance 
and the A55 for optimum efficiency, Maxion should meet its 
goal of strong performance and power efficiency, although 
it’s difficult to assess the latter without any power data. Even 
though it falls in the middle of Arm’s performance range, 
Maxion should considerably outperform any other an-
nounced RISC-V CPU, including SiFive’s new 7 Series (see 
MPR 11/12/18, “SiFive Raises RISC-V Performance”). 

The Maxion core appears well suited to running Linux 
and a high-level AI driver that parcels out tasks to a multi-
tude of Minions. Because AI workloads are highly parallel, 
the Esperanto chip will instantiate several Maxions for this 
purpose instead of creating a CPU with the most single-
thread performance. Data-center operators are concerned 
about electricity cost, so they prefer processors with superior 
power efficiency. 

Choosing RISC-V has helped Esperanto’s develop-
ment. By starting with the open-source Boom design, the 
startup says it completed Maxion’s RTL is less than nine 
months. Instead of designing a wholly proprietary instruc-
tion set, it gains access to the growing base of RISC-V devel-
opment tools and software. 

RISC-V proponents, in turn, are excited about a new 
CPU that extends RISC-V performance at least into the 
range of Arm’s Cortex family, but they’re likely to be disap-
pointed with their access to the core. Esperanto says it’ll 
license Maxion, but we expect it to serve only a few custom-
ers, likely those with high volumes. IP licensing requires a 
considerable investment in tools, validation, and customer 
support, and the revenue is typically small. The company 

 Esperanto 
Maxion  

Arm 
Cortex-A76  

Arm 
Cortex-A55 

Instruction Set RISC-V Arm v8 Arm v8 
Architecture Size 64 bits 64 bits 64 bits 
Extensions Compression Comp, SIMD Comp, SIMD 
Max Decode 4 instr 4 instr 2 instr 
FP/SIMD Units 1x64 bits 2x128 bits 2x64 bits 
Load/Store Units 1 L/S 2 L/S 1L + 1S 
Reorder Window 128 instr ~160 μops None 
Pipeline Length 10 stages 14 stages 7 stages 
Max Speed* 2.0GHz+ 3.0GHz 2.2GHz‡ 
SPECint/GHz† 6.2 9.4‡ 3.9‡ 
Est SPECint† 12.5 28.1‡ 8.5‡ 
Die Area* <0.5mm2‡ 0.9mm2‡ 0.25mm2‡ 
First Products mid-2020‡ 4Q18 1Q18 

Table 1. Comparison of high-performance CPUs. Maxion’s 
size and performance falls between that of Arm’s current 
“big” core (A76) and “little” core (A55). *In TSMC 7nm; 
†SPECint_2006. (Source: vendors, except ‡The Linley Group 
estimate) 

For More Information 

For an overview of Esperanto’s plans, access its 
website at www.esperanto.ai. Extensive documentation 
on the Boom microarchitecture is at github.com/riscv-
boom/riscv-boom-doc. Details on the Maxion design 
appear in a paper Esperanto presented at the recent 
RISC-V Summit, which will be available for download 
at riscv.org. 

http://www.linleygroup.com/mpr/article.php?id=11811
http://www.linleygroup.com/mpr/article.php?id=12060
https://github.com/riscv-boom/riscv-boom-doc
https://github.com/riscv-boom/riscv-boom-doc
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has no plans to open source the Maxion design, leaving most 
RISC-V users to seek another path to higher performance. 

Instead of licensing, Esperanto is focused on complet-
ing its first chip and selling it in AI accelerators. For this 
market, RISC-V offers little value to the end user; most cus-
tomers develop AI models in a high-level framework such as 
TensorFlow and don’t care about the hardware architecture. 
The company’s challenge is to deliver an AI accelerator 
that’s more efficient than those from other well-funded 
startups such as Graphcore, Habana, and Wave, all of which 
are at least a year ahead of Esperanto in reaching produc-
tion. Maxion is a good start, but Esperanto’s success will de-
pend far more on the performance of its Minions. ♦ 
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