

ESPERANTO MAXES OUT RISC-V
High-End Maxion CPU Raises RISC-V Performance Bar

By Linley Gwennap (December 10, 2018)

...

December 2018

© The Linley Group • Microprocessor Report

Esperanto ne est-as nur-a lingvo jam ne. Esperanto is
also a startup combining the two hottest processor tech-
nologies: AI acceleration and RISC-V. This business plan,
along with an all-star engineering team led by CEO and
RISC pioneer Dave Ditzel, helped the company close a re-
cent Series B round of $58 million—enough to bring its first
processor to market. Esperanto completed the RTL for this
product in September, so we expect samples to arrive in
2H19 followed by production around mid-2020. Given the
long lead time, the company is withholding details, but it
began the unwrapping process by disclosing the
microarchitecture of its ET-Maxion CPU.

The new processor chip actually includes two
different RISC-V CPU designs. ET-Maxion is a
high-performance out-of-order (OOO) microar-
chitecture for general-purpose code. ET-Minion is
a smaller AI-focused core that includes a set of
proprietary vector extensions. (The RISC-V vector
committee has yet to approve an official version.)
Esperanto has publicly described a design with 16
Maxion cores and 4,096 Minion cores, but we ex-
pect the initial product will be smaller, with no
more than half as many cores. The processor will
run Linux and other high-level software on the
Maxion cores while delegating AI-intensive work-
loads to the Minions.

The company expects Maxion to deliver
strong performance while maintaining excellent
power efficiency. To achieve this performance, the
CPU can decode four instructions per cycle and
issue them to five execution units in the OOO
core. It implements the base RV64GC instruc-
tion set, a common denominator among current
64-bit RISC-V designs. Using a 10-stage pipeline,

Maxion targets a relatively modest 2.0GHz clock speed in
7nm technology, boosting power efficiency. It should con-
siderably outperform any other announced RISC-V CPU.

Initially, Esperanto plans to sell its processor on ac-
celerator cards for data centers and other customers with
large AI workloads. This business model follows the lead
of other AI-chip startups such as Graphcore and Habana
as well as established vendors such as Nvidia and Xilinx
(see MPR 11/12/18, “AI Competition Begins to Bloom”).
But given that Maxion is the most powerful RISC-V CPU

Figure 1. Maxion microarchitecture. The CPU can fetch, decode, dispatch,
and retire four RISC-V instructions per cycle. The out-of-order (OOO) core
has four independent schedulers for the five function units.

Pre-decode / Decompress

L1 ITLB

Decoder DecoderDecoder Decoder

L1 DTLB

Integer
ALU

Integer
ALU

Addr
Unit

(AGU)

64-Bit
FPU

Branch
Prediction

Fetch Unit Fetch Buffer (8x4 instr)

32KB Instruction Cache + ECC

64b

Complex
Integer/
Branch

Sched Sched SchedSched

Fetch
addr

Mem
addr

128b

4x instr

4x instr
Register Rename / Dispatch

Integer Physical Register File (PRF)

L2 TLB

4x instr 4MB
L2

Cache
+ ECC

OOO
Core

4x instr

64KB Data Cache + ECC

FP PRF

http://www.linleygroup.com/mpr/article.php?id=12058

 2 Esperanto Maxes Out RISC-V

December 2018

© The Linley Group • Microprocessor Report

design yet revealed, several companies—including Western
Digital, an Esperanto investor—have inquired about licens-
ing it for other applications.

Starting With a Boom
With his professor David Patterson, Ditzel cowrote the sem-
inal 1980 paper “The Case for RISC”; he went on to drive
SPARC CPU development at Sun and later found x86
startup Transmeta. In 2014, he helped found Esperanto
Technologies to design a new high-performance CPU.
Since then, the team has grown to more than 100 engineers,
including former AMD senior fellow Dan Bailey; Roger
Espasa, who helped drive vector extensions for both Alpha
and x86; Dave Glasco, who led SoC design teams at AMD
and Nvidia; Duane Northcutt, who cofounded DriveScale,
a cloud-infrastructure vendor; and former Microprocessor
Report contributors Brian Case and Peter Glaskowsky.

The Silicon Valley startup initially planned to create its
own instruction set, but it eventually determined the emerg-
ing RISC-V ISA could provide most of what it needed while
simplifying the software development. RISC-V also provid-
ed a starting point for the Maxion microarchitecture: the
Berkeley Out-of-Order Machine (Boom). (Chris Celio, who
developed Boom at UC Berkeley, now works on Maxion.)
The Boom tool can generate RISC-V CPUs with variable
numbers of decoders and function units; Esperanto chose a
design that supports four instructions per cycle, as Figure 1
shows.

Boom designs have several limitations, however. The
simple six-stage pipeline limits clock speed to 1.0GHz even
in 7nm. Branch prediction relies on the 20-year-old Gshare
algorithm, and memory prefetching is nonexistent. Natural-
ly, the university tool lacks provisions for debugging, per-
formance monitoring, and reliability (such as ECC). Thus,
Esperanto invested considerable effort to improve and up-
grade the initial design.

Maxion uses a two-level branch predictor combining a
smaller single-cycle branch target buffer (BTB) and a larger
backing predictor (BPD). Esperanto designed a 2K-entry
BTB with a state-of-the-art prediction algorithm to increase
accuracy. It also added a path-based predictor for indirect

branches. If the BTB indicates a taken branch, it creates a
one-cycle bubble in the fetch sequence to fetch from the new
target. If the slower BPD predicts a taken branch, the bubble
is two cycles.

The predicted fetch address feeds into the 48-entry in-
struction TLB, which translates it to a physical address. The
32KB instruction cache then provides 16 instruction bytes.
Although most designers employ parity protection for the I-
cache (since the instructions are never modified), Maxion’s
I-cache includes options for ECC, parity, or no protection. A
fetch buffer decouples the fetch process from the decoders.
It has eight entries (32 instructions), enough to cover most
branch-prediction bubbles. If the buffer is empty, instruc-
tions flow directly to the decoders. Not counting the buffer,
the front end requires four pipeline stages.

Show a Little Compression
The four decoders can handle all basic RISC-V instructions
including the M (integer multiply/divide), A (atomic), F (32-
bit floating point), and D (64-bit floating point) extensions.
Esperanto added a set of special registers for debugging,
performance monitoring, and other low-level functions.
Although Boom doesn’t implement the C (compressed) ex-
tension, the company added this capability to Maxion for
broader compatibility with other RISC-V CPUs. Com-
pressed instructions also increase code density and therefore
the cache-hit rate, boosting performance.

The C extension defines a set of 16-bit instructions that
cover the most common functions and can access only a
quarter of the register file (see MPR 3/28/16, “RISC-V
Offers Simple, Modular ISA”). These instructions can mix
freely with standard 32-bit instructions, which are necessary
to perform the full set of functions. Mixing instruction sizes,
however, creates challenges for a high-performance CPU.
For example, the C extension allows 32-bit instructions to
be unaligned, meaning a single instruction can span a cache-
line boundary or even a page boundary. The branch predic-
tor must comprehend half-word addresses, and the CPU
may issue redirections for partially decoded instructions.
Furthermore, Esperanto had to extend the standard RISC-V
verification tests to cover all these corner cases.

Maxion detects 16-bit instructions as they come
from the I-cache. Because every 16-bit RISC-V in-
struction maps to a single 32-bit RISC-V instruction,
the hardware simply expands compressed instructions
before loading them into the fetch buffer. Although
this approach adds some complexity to the front end,
it greatly simplifies the decoders, which handle only
32-bit encodings. Once the instructions are decoded,
the CPU renames the 32 architected integer registers
to 128 physical registers; floating-point registers map
to a separate 64-entry physical register file (PRF). The
instructions then dispatch to the out-of-order core.
Decoding, renaming, and dispatching squeeze into
two pipeline stages, as Figure 2 shows.

Figure 2. Maxion pipeline. The CPU requires 10 stages for basic integer
instructions and 12 stages for a load instruction that hits the data cache.

Sched RR Exec WB

Sched RR Addr D$ Align

Predict Addr I$ Align Dec Ren

Instruction fetch Decode, rename

Arithmetic pipeline:
execute, writeback

Load pipeline:
generate addr,
access cache

10-cycle branch-misprediction penalty

Schedule,
read registers 4-cycle load-use

Buffer

WB

http://www.linleygroup.com/mpr/article.php?id=11578

 Esperanto Maxes Out RISC-V 3

 December 2018

© The Linley Group • Microprocessor Report

Maxion offers five function units: two simple integer
units; one complex integer unit that includes multiply, di-
vide, and branch capability; one load/store unit; and one
floating-point unit (FPU). Each has a 16-entry scheduler,
except the two simple integer units share a single scheduler,
resulting in a total of 64 entries. Each scheduler can issue
one instruction per cycle (two for the shared scheduler) to
its function unit(s); instructions issue when their operands
are available and thus can proceed out of program order.
After being issued, instructions read their operands from the
PRF, execute for one or more cycles, then write their results
back to the PRF. The reorder buffer (ROB) retires up to four
instructions per cycle in program order; it can track 128 in-
structions in the reorder window.

Shouldering the Load
The complex integer unit resolves all branches, updating
the branch predictors. If the branch result differs from the
original prediction, the pipeline must be flushed and re-
started from the new target address, causing a 10-cycle delay,
as Figure 2 shows. The 64-bit-wide FPU is fully pipelined
for multiply-accumulate (MAC) instructions, which have a
four-cycle latency for both single- and double-precision
operands.

The load/store unit calculates the effective address and
places it in the 32-entry load queue or 32-entry store queue
as appropriate. Entries that clear the queue proceed to the
32-entry data TLB. A 1,024-entry L2 TLB services both
DTLB and ITLB misses, albeit with a one-cycle bubble; a
hardware page-table walker (PTW) resolves L2 TLB misses.
The CPU then accesses the data cache and (for a load) re-
turns the result to the register file. The loaded value is avail-
able for subsequent instructions on the next cycle, yielding a
load-use delay of at least four cycles, as Figure 2 shows. Ac-
cesses that miss the data cache move to the unified L2 cache.
In the meantime, subsequent accesses in the load/store
queues can access the data cache (hit under miss).

At 64KB, Maxion’s data cache is larger than its instruc-
tion cache and implements ECC protection to avoid data
loss. A 4MB L2 cache services both I- and D-cache misses
and is also ECC protected; presumably, multiple Maxion
cores share this cache. The CPU contains stride prefetchers
for the L1 and L2 to reduce cache misses.

As Figure 3 shows, the layout allocates the most area
to branch prediction (including various memories), the
floating-point unit, and the prefetcher. Accurate branch
prediction minimizes the number of 10-cycle misprediction
penalties. Similarly, the prefetcher avoids long accesses to
the L2 cache and DRAM, so spending die area on these units
provides a strong performance boost.

Reaching Arm’s Middle
On the basis of its testing and simulations, Esperanto ex-
pects Maxion’s performance per clock (IPC) to fall between
that of Arm’s Cortex-A57 and Cortex-A72 CPUs on the

SPECint_2006 benchmark, as Figure 4 shows. But the A72
will be four years old by the time Maxion reaches produc-
tion. A more appropriate comparison is with Cortex-A76,
Arm’s most recent high-end mobile CPU (see MPR 6/4/18,
“Cortex-A76 Revamps Core Design”). By our estimates,
based on published benchmark results, the A76 has delivers
about 50% better IPC than the A72 and thus leads the pro-
jected Maxion score by a similar amount.

To achieve this IPC advantage, the A76 implements a
considerably more powerful microarchitecture. Although
like Maxion it’s a four-issue machine, the A76 provides a
second floating-point unit and, critically, a second load/store
unit. Memory operations are often a performance limiter,

Figure 3. Preliminary Maxion layout. The CPU includes a
32KB instruction cache (IC), branch prediction (BPU and
BPD), decode and rename logic (RNM), out-of-order logic
(OOO), integer units (IRF), a floating-point unit (FPU), a load-
store unit (LSU), a page-table walker (PTW), a prefetcher
(HPF), and a 64KB data cache.

Figure 4. Per-clock performance. Esperanto projects its
Maxion CPU will deliver per-clock performance similar to
that of Cortex-A72, but it will still lag current high-end Arm
CPU designs. *SPECint_2006, GCC. (Source: Esperanto, ex-
cept †The Linley Group estimate)

0
1
2
3
4
5
6
7
8
9

10

SP
EC

in
t/G

Hz
*

C
or

te
x-

A7
6†

C
or

te
x-

A7
5†

C
or

te
x-

A7
2

C
or

te
x-

A5
7

M
ax

io
n

Bo
om

 v
2

R
oc

ke
t

C
or

te
x-

A5
5†

http://www.linleygroup.com/mpr/article.php?id=11982

 4 Esperanto Maxes Out RISC-V

December 2018

© The Linley Group • Microprocessor Report

and handling two loads per cycle is a hallmark of modern
high-performance CPUs. The A76 also has nearly twice as
many scheduler entries as Maxion, creating a much larger
reorder window. It features a private L2 cache with six-cycle
latency, markedly faster than Maxion’s large shared L2.

The other half of the performance equation is clock
speed. Given that Cortex-A75 achieves 2.85GHz in 10nm,
Arm expects Cortex-A76 (which uses the same pipeline) to
reach 3.0GHz in 7nm—much faster than Maxion’s projected
2.0GHz. To enable greater clock speeds, these Arm cores
employ a 14-stage integer pipeline that’s considerably longer
than Maxion’s 10-stage design. In particular, the Arm pipe-
line allows an extra cycle for both instruction- and data-
cache access, relieving that bottleneck. Esperanto expects
that Maxion’s clock could exceed 2.0GHz in some configu-
rations, but its shorter pipeline is unlikely to approach the
speed of the A76. Combining its greater IPC and faster
clock, the A76 will likely double Maxion’s performance.

On the plus side, we expect Maxion to consume less
than 0.5mm2 in 7nm, making it about half the size of
Cortex-A76, as Table 1 shows. (For comparison, we re-
moved the A76’s private L2 cache from its area.) Although
some of this savings may come from the simpler RISC-V
ISA, we believe most comes from the smaller scheduler and
single load/store unit. Another big savings lies in Maxion’s

lone 64-bit FPU versus the A76’s dual 128-bit FPUs. Those
wider units implement Arm’s Neon SIMD instruction set,
whereas Maxion omits any vector instructions. To imple-
ment similar features, the bulky FPU in Figure 3 would need
to be at least four times larger. The smaller area and lower
clock speed should reduce Maxion’s power, possibly enough
to match the mobile-optimized A76 in efficiency.

Table 1 also compares Maxion with Cortex-A55, a
CPU that targets power efficiency rather than maximum
performance. The A55 is a simple in-order design that’s
limited to two instructions per cycle, although it’s flexible in
its ability to pair instructions (see MPR 6/5/17, “Cortex-
A55 Improves Memory”). Despite the A55’s relatively short
seven-stage pipeline, it exceeds 2.0GHz in some 10nm prod-
ucts, possibly because Arm tuned this pipeline through sev-
eral generations. Esperanto is withholding Maxion’s die area
and power until it completes the physical design, but the
RISC-V core will be hard pressed to match the A55’s power
efficiency and small size.

Maximizing Performance per Watt
Using Arm as a well-known point of comparison, Maxion’s
performance should fall about halfway between that of the
“big” Cortex-A76 and the “little” Cortex-A55. This ratio is
consistent with the designs’ relative microarchitecture com-
plexity. Since Arm positions the A76 for best performance
and the A55 for optimum efficiency, Maxion should meet its
goal of strong performance and power efficiency, although
it’s difficult to assess the latter without any power data. Even
though it falls in the middle of Arm’s performance range,
Maxion should considerably outperform any other an-
nounced RISC-V CPU, including SiFive’s new 7 Series (see
MPR 11/12/18, “SiFive Raises RISC-V Performance”).

The Maxion core appears well suited to running Linux
and a high-level AI driver that parcels out tasks to a multi-
tude of Minions. Because AI workloads are highly parallel,
the Esperanto chip will instantiate several Maxions for this
purpose instead of creating a CPU with the most single-
thread performance. Data-center operators are concerned
about electricity cost, so they prefer processors with superior
power efficiency.

Choosing RISC-V has helped Esperanto’s develop-
ment. By starting with the open-source Boom design, the
startup says it completed Maxion’s RTL is less than nine
months. Instead of designing a wholly proprietary instruc-
tion set, it gains access to the growing base of RISC-V devel-
opment tools and software.

RISC-V proponents, in turn, are excited about a new
CPU that extends RISC-V performance at least into the
range of Arm’s Cortex family, but they’re likely to be disap-
pointed with their access to the core. Esperanto says it’ll
license Maxion, but we expect it to serve only a few custom-
ers, likely those with high volumes. IP licensing requires a
considerable investment in tools, validation, and customer
support, and the revenue is typically small. The company

 Esperanto
Maxion

Arm
Cortex-A76

Arm
Cortex-A55

Instruction Set RISC-V Arm v8 Arm v8
Architecture Size 64 bits 64 bits 64 bits
Extensions Compression Comp, SIMD Comp, SIMD
Max Decode 4 instr 4 instr 2 instr
FP/SIMD Units 1x64 bits 2x128 bits 2x64 bits
Load/Store Units 1 L/S 2 L/S 1L + 1S
Reorder Window 128 instr ~160 μops None
Pipeline Length 10 stages 14 stages 7 stages
Max Speed* 2.0GHz+ 3.0GHz 2.2GHz‡
SPECint/GHz† 6.2 9.4‡ 3.9‡
Est SPECint† 12.5 28.1‡ 8.5‡
Die Area* <0.5mm2‡ 0.9mm2‡ 0.25mm2‡
First Products mid-2020‡ 4Q18 1Q18

Table 1. Comparison of high-performance CPUs. Maxion’s
size and performance falls between that of Arm’s current
“big” core (A76) and “little” core (A55). *In TSMC 7nm;
†SPECint_2006. (Source: vendors, except ‡The Linley Group
estimate)

For More Information

For an overview of Esperanto’s plans, access its
website at www.esperanto.ai. Extensive documentation
on the Boom microarchitecture is at github.com/riscv-
boom/riscv-boom-doc. Details on the Maxion design
appear in a paper Esperanto presented at the recent
RISC-V Summit, which will be available for download
at riscv.org.

http://www.linleygroup.com/mpr/article.php?id=11811
http://www.linleygroup.com/mpr/article.php?id=12060
https://github.com/riscv-boom/riscv-boom-doc
https://github.com/riscv-boom/riscv-boom-doc

 Esperanto Maxes Out RISC-V 5

 December 2018

© The Linley Group • Microprocessor Report

has no plans to open source the Maxion design, leaving most
RISC-V users to seek another path to higher performance.

Instead of licensing, Esperanto is focused on complet-
ing its first chip and selling it in AI accelerators. For this
market, RISC-V offers little value to the end user; most cus-
tomers develop AI models in a high-level framework such as
TensorFlow and don’t care about the hardware architecture.
The company’s challenge is to deliver an AI accelerator
that’s more efficient than those from other well-funded
startups such as Graphcore, Habana, and Wave, all of which
are at least a year ahead of Esperanto in reaching produc-
tion. Maxion is a good start, but Esperanto’s success will de-
pend far more on the performance of its Minions. ♦

To subscribe to Microprocessor Report, access www.linleygroup.com/mpr or phone us at 408-270-3772.

https://www.linleygroup.com/mpr/subscribe.php

